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Abstract. The classical ‘Kirchhoff’s theorem’ (the energy density of the radiation at
equilibrium at high temperature,T , is a function ofT only) is used to obtain the Casimir
energy at zero temperature without recourse to regularization. The validity of ‘Kirchhoff’s
theorem’ at the high-temperature limit for the case at hand is confirmed. The Casimir entropy is
defined and its temperature dependence is displayed. The Casimir entropy at high temperatures
is shown to approach a positivegeometry-dependentbut temperature-independentconstant.

1. Introduction

The zero-point energy of vacuum fluctuations is an important result in the theory of quantized
fields [1]. It is of interest in various branches of physics starting from liquid helium and
extending all the way to the cosmological constant [2]. The Casimir effect deals with the
modification of this energy (or energies when we consider not only the electromagnetic field)
due to constraining boundaries. The original analysis [3] captured the basic simplicity of
the problem by calculating the force between two conducting plates due to the modification
which their presence imposes on the allowed (electromagnetic) modes. Cosmological
implications are considered to be due to the finiteness of the universe [4]. The literature on
the subject is vast, as is attested to in [4–8]. The vacuum for the electromagnetic field may
be considered as its equilibrium state in the limit of vanishing temperature (T ). It is then
natural to study the extension of the above to finite temperatures. Indeed, several studies
were published [9–12] where the Casimir free energy was obtained. Whence the force per
unit area (pressure) on the plates could be calculated assuming that the Casimir free energy
abides by the standard thermodynamic formulae.

In section 2 we obtain the Casimir energy at zero temperature from the high-temperature
limit without recourse to regularization. This is accomplished by using what we call
‘Kirchhoff’s theorem’† (valid within classical physics) which states that the energy density,
u(T ), of radiation confined in a cavity at equilibrium temperatureT is a function of the
temperature only at high temperatures. In section 3 we consider the expression for the
Casimir free energy and relate it to the energy via the usual thermodynamic formula. We
then define the Casimir entropy and display its temperature variation in a figure. The

† Kirchhoff’s Law is a general relation (based on thermodynamics) between the radiative and absorptive power
of a body held at a fixed temperature. The law implies that the total energy density is a function of temperature
only ([5, p 2]). The latter is also implied by the equipartition theorem (e.g. [13])—hence we refer to the result
that the energy density of the radiation at equilibrium at high temperature is a function ofT only as ‘Kirchhoff’s
theorem’.
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Casimir entropy, in the classical limit, is ageometry-dependentbut temperature-independent
constant (and, of course, its expression does not involve Planck’s constant). In section 4 we
use standard regularization techniques to show that at the highT limit, the Casimir energy
and energy fluctuations (to all orders) vanish exponentially, in conformity with the classical
‘Kirchhoff’s theorem’. In section 5 we give a simple geometrical meaning to the Casimir
entropy, note that at the highT limit the Casimir force (the plates’ mutual attraction) is
entirely entropic, and comment on possible future work.

2. The Casimir effect

The evaluation of the Casimir energy due to vacuum fluctuations for the case we consider is
given in several texts and publications, e.g. [1, 4, 5]. We shall, therefore, present a sketchy
outline of the set-up aimed primarily at fixing the notation. Thus, we consider the radiation
confined between two conducting plates. The edge size of both plates isL. The first is
placed atz = 0 in theXY plane. The second plate is placed atz = a parallel to theXY
plane.L� a; in fact we are interested inL→∞ while a remains finite. The energy tied
down in the zero-point fluctuations of the fields in the presence of the plates is

E(a, T = 0) = h̄cL
2

2π

∫
k‖ dk‖

[
k‖
2
+
∞∑
m=1

km

]
k‖2 = kx2+ ky2 km

2 = k‖2+ m
2π2

a2
m = 0, 1, 2, . . . .

(1)

The energydensity in dimensionless units is

ε(a, 0) =
∫
x dx

[
x

2
+
∞∑
m=1

√
x2+m2

]
k = π

a
x

(2)

while the dimensional energy density is given by

E(a,0)

L2a
= h̄c

2π2

π4

a4
ε(a, 0). (3)

The zero-point fluctuations of the fields in the same volume without the constraining
boundaries is, in our dimensionless units,

ε(∞, 0) =
∫
x dx

∫
dm

√
x2+m2. (4)

The dimensionless Casimir energy density is

εC(0) = ε(a, 0)− ε(∞, 0) =
∫

dx x

[
x

2
+
∞∑
m=1

√
x2+m2−

∫
dm

√
x2+m2

]
. (5)

Both ε(a, 0) andε(∞, 0) diverge. Thus, the evaluation ofεC(0) requires regularization.
This is done most commonly [1, 8] via the introduction of ak-dependent function,r(k/kC),
such thatr = 1 for k < kC and r = 0 for k � kC ≡ 1/α. Such a cut-off represents
the physics in as much as conductivity is ak-dependent quantity; for 1/k � d—the
interatomic distance—conductors become essentially transparent to radiation. For such
waves the placement of the plates has no effect whatever. A convenient cut-off function is
[1, 8]

r(αk) = exp(−αk).
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A detailed calculation will not be given here (cf, e.g. [1, 8]). The result for our case in our
dimensionless units is

εC(0) = − 2

(2π)4
ζ(4) (6)

where

ζ(n) =
∞∑
m=1

1

mn
.

We now turn to ‘Kirchhoff’s theorem’. The theorem states that the energy density of
the radiation field enclosed in a cavity at equilibrium with temperatureT is a function ofT
only. To see that the theorem is relevant to our case we consider a formal modification of
the set-up specified above to the following one [8]. Consider six conducting plates forming
a cube of edge lengthL. The corner of the cube is placed at the origin of our coordinate
system. An additional (extra) conducting plate is placed atz = a, parallel to theXY plane.
Thus, the cube is divided into two cavities of volumesL2a andL2(L − a). The Casimir
energy density is the difference in the energy densities of these two cavities. When the limit
L→∞ is taken we arrive at the set-up we discussed above. Next we extend our analysis
to the Casimir energy at finite temperature. This is most readily accomplished by including
in the above expressions (equations (4) and (5)) the additional energy in each mode due to
its thermal occupancy,

n(k, T ) = 1

exp( Tc
T
x)− 1

kBT c = h̄cπ
a
. (7)

(kBTc serves as the characteristic energy; that this is so will become obvious as the
calculations progress.) The expression for the Casimir thermal energy density is, then,

uC(a, T ) = u′(a, T )− u′(∞, T )+ uC(a, 0). (8)

Here u′(a, T ) (u′(∞, T )) is the energy density of the constrained (unconstrained)
systemwithout the zero-point energy contributions (hence the prime on theu). Here by
‘constrained’ we mean with the conducting plates atz = 0 and z = a. uC(a, 0) is the
Casimir energy density due to vacuum fluctuations,

uC(a, 0) = εC(0)
of equation (5). (We use a different notation because here, in equation (8),uC(a, 0) is
regarded as unknown, to be determined by means of ‘Kirchhoff’s theorem’.)u′(a, T ) is
given by (after a trivial change of variables),

u′(a, T ) = D
[
f (0)/2+

∞∑
m=1

f (m)

]
D = h̄c

2π2

(π
a

)4
.

f (m) =
∫ ∞
m

dy y2n(y, T )

(9)

while

u′(∞, T ) = D
∫

dmf (m). (10)

Now ‘Kirchhoff’s theorem’ states that

uC(T )→ 0 T � Tc. (11)
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Evaluation of the sum in (9) via the Poisson summation formula [8, 14] gives

u′(a, T )− u′(∞, T ) = D
√

2π
∞∑
m=1

F(2πm) (12)

where

F(λ) =
√

2

π

∫ ∞
0

dx cos(λx)f (x).

Direct integration yields(t = π T
Tc
, λ = 2πm)[

u′(a, T )− u′(∞, T )
]
/D = −2t3

∞∑
m=1

1

λ
ctnh(tλ)csch2(tλ)+ 2

(2π)4
ζ(4). (13)

Using the results of equation (13) in equation (8) and noting that the sum involving the
hyperbolic functions goes to zero (exponentially) ast → ∞, we have from ‘Kirchhoff’s
theorem’ (11) our final result

uC(a, 0)/D = εC(0) = − 2

(2π)4
ζ(4). (14)

Thus, we obtained the Casimir energy atT = 0 without recourse to regularization, but
by integrations of the integrable temperature-dependent terms and assuming the validity of
‘Kirchhoff’s theorem’ at high temperatures.

3. Casimir free energy and entropy

The Casimir free energy at finite temperatures has been calculated by several authors
(e.g. [9–12]). Here also one calculates the difference between the free energy of the
constrained system and the unconstrained one. Through an analysis quite similar to the
one we considered above, in section 2, one obtains [10–12](λ = 2πm)

fC(T )/D ≡ φC(t) = −t
∞∑
m=1

1

λ3
[ctnh(tλ)+ (tλ)csch2(tλ)]. (15)

HerefC(T ) is the Casimir free energy per unit volume. The expression relates, as it
should, to the Casimir energy density by the thermodynamic relation

εC(t) = φC(t)+ t ∂φC
∂t

. (16)

The zero-temperature limit yieldsφC(t → 0)→ εC(0). Thus, it is natural to define Casimir
entropy density,σC(t), in units whereD = 1, by

φC(t) = εC(t)− tσC(t). (17)

The temperature variations of these quantities are displayed in figure 1. The Casimir
entropy density in ourD = 1 units is, in the highT limit,

σC(t � 1) = ζ(3)

(2π)3
.

Reverting to dimensional expressions, the Casimir entropySc at the highT limit is
Sc/kB

L2a
= ζ(3)

24π

1

a3
. (18)

It is noteworthy that while the Casimir energy density vanishes in the highT limit
(abiding thereby by ‘Kirchhoff’s theorem’), the Casimir free energy density does not. Thus,
the resultant force of attraction between the plates is of entropic origin. We discuss this
point further in section 5.
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Figure 1. Casimir energy (I), free energy (II), and negative entropy (III) as a function ofT .
All quantities are in dimensionless units.

4. ‘Kirchhoff’s theorem’ and Casimir energy fluctuations

In section 2 we used ‘Kirchhoff’s theorem’ (cf footnote in section 1). It is of interest to
give an explicit proof for the particular case under study here, namely, the Casimir energy
density of the radiation field between two conducting parallel plates. This is done in this
section.

The variation with temperature of the thermodynamic quantities considered in section
3 are seen to be essentially confined tot 6 1. We will now consider the expression for the
Casimir energy density (8) fort � 1. The analysis in this section requires regularization.
The general formulae involved are given in detail in the appendix. The basic physical view
of it is the existence, which we now assume, of a high frequency cut-off,ωc, such that for
temperaturesT � h̄ωc/kB we may expand occupancy terms appearing in the integrals as a
power series in(h̄ω)/(kBT ). Thus, the energy tied in a mode labelled by ‘k’ is

h̄ωk[ 1
2 + n(k, T )] → kBT . (19)

This, of course, is recognized as the equipartition [13] result—each mode ties downkBT

amount of energy—it being equivalent to a harmonic oscillator [5]. Now the evaluation
of the thermal terms in (8) (namely,u′(a, T ) andu′(∞, T )) requires regularization as
both diverge. In the appendix it is shown that the final result is zero—i.e. the two
terms cancel each other—they correspond to thep = 0 case (i.e. even). Thus, we have
established ‘Kirchhoff’s theorem’ for this case. Further, one may consider the Casimir
energy fluctuations [11], i.e. the difference between the energy fluctuations in the constrained
and unconstrained systems, at finite temperatures. Evaluation of the mean square energy
fluctuation per unit volume gives

12EC = D
∫
x dx

x2

2
[
(2 sinh( πx

t
)
]2

+
∞∑
m=1

∫ ∞
m

x dx
x2[

(2 sinh( πx
t
)
]2 −

∫
dm

∫ ∞
m

x dx
x2[

(2 sinh( πx
t
)
]2 . (20)

Upon taking the highT expansion we again have the case ofp even (cf the appendix)
which means the vanishing of the Casimir energy fluctuations at the highT limit. It can be
shown that higher orders of the fluctuations also vanish in this limit.
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The analysis can be viewed alternatively as follows. Given that the thermal occupancy
is given by the Bose expression (7), we may calculate the Casimir thermal energy without
the zero-point fluctuations contribution. Now at highT we have (cf equation (19)) as the
energy tied to a mode,

h̄ωn(k, T )→ kBT − 1
2h̄ωk.

Therefore, in order to have a vanishing Casimir energy (by ‘Kirchhoff’s theorem’) we must
add 1

2h̄ωk to every mode—confirming thereby the form of the zero-point energy for the case
of a Bose system.

5. Summary and conclusions

The analysis of the Casimir effect in a simple geometry as studied here involves essentially
one characteristic parameter—the separation between the conducting plates,a. This
parameter determines a characteristic temperature which we denoted byTc. ‘Kirchhoff’s
theorem’, proven within classical physics, asserts that the energy density for the Casimir
effect where one calculates differences in the energy density of cavities at equal temperature
(T ), should vanish. Using a form of the correspondence principle we took the theorem
to hold for T/Tc � 1. This provides an equation that relates the contribution of the
thermal energy to the temperature-independent Casimir energy density of zero temperature.
This equation allowed us to calculate the zero-temperature Casimir energy from the high-
temperature results for the thermal energy. The calculation gave the Casimir energy without
recourse to regularization since at finite temperatures the integrals converge. The known
result for the Casimir free energy (at finiteT ) was combined with that of the thermal energy
to define, in a natural way, a Casimir entropy. It was shown to approach a constant value
for T/Tc � 1 which is classical—it does not involve Planck’s constant nor the velocity
of light—and is temperature independent. It merely reflects the geometry of the problem.
Thus, for the geometry considered, namely, the two parallel plates separated by a distancea,
the entropy forT/Tc � 1 is essentially equal to the number of squares of edgea required to
fill the area of the plate. From this vantage point the attractive force between the plates (the
‘Casimir force’) is entirely entropic—since by getting closer the number of such squares
increases while the energy, as stressed above, is zero. It would be very useful here to derive
this entropy from Boltzmann’s method of counting the number of allowed states. It seems
that the Casimir entropy is the simplest descriptive parameter for the Casimir effect—it
being merely geometrical.
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Appendix. Regularization

Upon the introduction of the regularization function,r(αx), the general form of the
expression that we wish to evaluate is

tp =
∫ ∞

0
x dx

xp

2
f (x)+

∞∑
m=1

∫ ∞
m

x dx xpf (x)−
∫ ∞

0
dm

∫ ∞
m

x dx xpf (x). (A1)

(Equation (5) in section 2 corresponds top = 1.) This equation leads to the following
cut-off independent solution:

tp = lim
α→0

dp+1

dαp+1

[
1

2α
+ 1

α2

[
α

eα − 1

]
− 1

α2

]
. (A2)

Using the well known [1, 8] expansion

x

ex − 1
= 1− x

2
+
∞∑
m=1

Bmx
2m

(2m)!
(A3)

(here Bm are the Bernoulli numbers [1, 8]) we see that for evenp, tp → 0. For
p + 1= 2m, we obtain

tp = Bm+1

(2m)(2m− 1)
. (A4)

Thus, in evaluating theT = 0 case (i.e. equation (5)) we obtain

εC(0) = 1
720.
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